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Abstract 

The architecture, engineering, and construction (AEC) industry is known for its intensive use of 

resources, making sustainability and efficiency essential goals in modern civil engineering. With 

rapid advancements in computational technologies, structural optimization has become a 

prominent method to enhance design performance while minimizing material use and cost. 

Although significant research has been conducted, a focused review of recent developments in 

this area remains limited. This paper aims to critically examine current research in structural 

optimization within civil engineering, highlighting key objectives, methods, and trends. After 

establishing the relevance of sustainable design in the AEC sector, the paper outlines the review 

methodology used to gather and analyze relevant academic literature. Articles are then assessed 

based on optimization goals, with attention to how these priorities have evolved over time and in 

different regions. The structural optimization process is broken down into four main stages: 

modeling and structural analysis, formulation of the optimization problem, applied optimization 

techniques, and computational tools or platforms. Each stage is discussed in detail using insights 

from selected studies. The review concludes by identifying knowledge gaps and offering 

suggestions for future research directions. By synthesizing current achievements and limitations, 

this paper provides a foundation for advancing structural optimization practices in sustainable 

civil engineering design.  

  



 

1 Introduction 

Civil engineering is a vital field focused on the planning, design, construction, and maintenance 

of infrastructure systems and built environments. This discipline encompasses a wide range of 

projects, including residential buildings, transportation networks like bridges and highways, and 

public utilities. Despite its essential role in societal development, the architecture, engineering, 

and construction (AEC) sector is frequently criticized for its low productivity, intensive labor 

requirements, and adverse environmental effects. The sector, while economically significant, 

also faces major challenges in improving sustainability and efficiency. Globally, the construction 

industry contributes substantially to the economy. According to Horta et al. [4], it accounts for 

nearly 9% of the world’s gross domestic product (GDP). In the context of energy consumption 

and emissions, the impact is even more significant. For instance, a study by Xu and Wang [5] 

revealed that in 2017, the construction sector was the second-largest consumer of energy in 

China. It was responsible for approximately 20% of the country’s total energy use, 23% of 

electricity consumption, and 30% of CO₂ emissions. These figures highlight the urgency of 

enhancing the environmental, social, and economic performance of civil engineering practices 

through innovative and sustainable solutions. 

Over the past few decades, the integration of computational tools in structural engineering has 

opened new avenues for improving design processes. Among these, structural optimization—an 

approach grounded in mathematical modeling and computational algorithms—has gained 

significant traction. Structural optimization seeks to achieve the best possible configuration or 

design of a structure to meet specific performance goals under defined constraints. The 

increasing demand for efficient and sustainable designs has made optimization a central topic in 

civil engineering research and practice. Optimization, in general, refers to identifying the most 

effective solution to a problem given certain limitations or objectives. Within the civil 

engineering context, optimization techniques can be applied across the entire lifecycle of a 

project, including design, construction, operation, and maintenance. One particularly prominent 

area is structural optimization, which involves adjusting the geometric or topological 

characteristics of a structure to improve performance or reduce costs. In this paper, structural 

optimization is defined as the process of identifying the most effective arrangement of structural 

components to satisfy predefined design criteria, without delving into the properties of the 

materials used. Material choice is undeniably crucial in determining structural performance. 

Civil engineering structures often rely on concrete-based composite materials such as plain 

concrete, reinforced concrete, and prestressed concrete [1,9,10]. While multiple materials may be 

used in practice, optimization studies typically simplify analysis by focusing on structures 

composed of a single material. This simplification helps manage computational complexity, 

particularly in large-scale problems. 

Structural optimization is a critical aspect of engineering design, broadly classified into four 

main categories: size, shape, topology, and multi-objective optimization. Size optimization 

focuses on altering the dimensions or cross-sectional areas of structural elements to enhance 

performance, typically aiming to reduce material usage while maintaining strength and stability. 

Shape optimization involves adjusting the geometry or nodal positions within the structure to 

achieve an improved and more efficient configuration, often leading to better stress distribution 

and overall functionality. Topology optimization, on the other hand, concerns the strategic 

arrangement of material within a given design space. It seeks to eliminate inefficient or 

redundant components, thereby creating lightweight structures without compromising 



 

performance. Lastly, multi-objective optimization integrates these approaches by simultaneously 

considering various objectives—such as minimizing weight, cost, and environmental impact—

resulting in a comprehensive layout optimization strategy. This holistic method enables 

engineers to balance competing demands and achieve efficient, sustainable, and high-performing 

structural designs. 

In earlier decades, structural optimization efforts were largely theoretical and confined to simple 

structures used as benchmark models. However, with the evolution of computational methods 

and advances in construction technology, these techniques are now applied to more complex and 

large-scale projects. For example, the Qatar National Convention Centre (QNCC) in Doha 

incorporated a three-dimensional evolutionary topology optimization algorithm known as 

Extended Evolutionary Structural Optimization (EESO) to minimize compliance and enhance 

structural performance [12]. Similarly, the Shenzhen CITIC Financial Center in China benefited 

from a topology-optimized exoskeleton truss system, which improved material efficiency 

without compromising structural stiffness [13]. 

One of the primary motivations behind structural optimization is cost reduction. Since structural 

components often represent a major portion of overall construction expenses, minimizing 

structural weight is a commonly pursued goal to reduce material usage and project cost [14]. 

Recently, the focus has expanded to include environmental considerations. The construction 

sector's significant CO₂ emissions have driven researchers to develop optimization methods that 

not only minimize cost and weight but also aim to reduce environmental footprints. Furthermore, 

structural optimization has been used to enhance performance attributes such as mechanical 

behavior, seismic resistance, and aerodynamic stability [15], tailoring structures for diverse 

environmental conditions and functional demands. To meet these evolving goals, various 

optimization methods have been proposed and refined. Among them, metaheuristic algorithms—

such as genetic algorithms, particle swarm optimization, and harmony search—have emerged as 

popular approaches for solving complex and high-dimensional problems [16]. These techniques 

are well-suited for combinatorial optimization and can explore large solution spaces effectively. 

However, they are not without drawbacks. Metaheuristics can be computationally intensive and 

may struggle with convergence in high-dimensional design spaces [17,18]. 

Consequently, recent studies have concentrated on enhancing the performance of these 

algorithms. For instance, Mortazavi [19] introduced a fuzzy decision-making enhancement to the 

Interactive Search Algorithm (ISA), resulting in the Fuzzy Tuned Interactive Search Algorithm 

(FTISA), which demonstrated improved computational efficiency and accuracy. Degertekin [20] 

developed improved versions of the harmony search algorithm—namely, the Efficient Harmony 

Search Algorithm and the Self-Adaptive Harmony Search Algorithm—for truss structure 

optimization. These methods delivered faster convergence and better results compared to the 

original approach. Likewise, Zheng et al. [21] introduced the Transformable Triangular Mesh 

(TTM) method, a novel explicit topology optimization technique, which outperformed many 

existing algorithms in terms of solution quality and computational speed. 

Despite these advancements, the body of research remains fragmented, and there is a lack of 

comprehensive reviews that synthesize recent progress, identify trends, and outline future 

directions in structural optimization for civil engineering. This paper aims to fill that gap by 

providing a systematic and critical analysis of recent studies in the field. It explores optimization 

objectives, categorizes methodologies, assesses temporal and geographic research trends, and 



 

evaluates the optimization process across four key stages: structural modeling and analysis, 

problem formulation, optimization techniques, and computational platforms. The remainder of 

this paper is structured as follows. Section 2 describes the methodology used to collect and 

screen relevant literature. Section 3 provides statistical insights into the selected studies. Section 

4 analyzes the optimization objectives and discusses how they have evolved over time and across 

regions. Section 5 offers a detailed review of the structural optimization process. Section 6 

identifies research gaps and proposes future research directions. Finally, Section 7 concludes the 

paper with a summary of findings and implications for the field.  

 

2 Methodology 

This review employed a structured and systematic method to explore and synthesize current 

developments in structural optimization within civil engineering. The study’s process was 

divided into several interconnected phases, beginning with the identification and collection of 

relevant academic sources, followed by data categorization, statistical assessment, thematic 

analysis of optimization objectives, and a discussion of methodological trends, limitations, and 

future directions. An overview of the entire process is illustrated in Figure 1. The first step 

involved retrieving academic publications from a comprehensive online source—Google 

Scholar—due to its extensive database of peer-reviewed journals, conference proceedings, 

books, and theses. Details regarding the search procedure and selection criteria are discussed in 

Section 2.1. Section 2.2 provides a concise description of the keyword selection strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2.1 Literature Selection Process 

Academic literature was sourced using Google Scholar, given its inclusive range of scholarly 

content. A set of targeted search terms was applied to identify publications focusing on various 

aspects of structural optimization. These terms encompassed concepts such as "size 

optimization," "topology optimization," "shape optimization," "layout optimization," 

"metaheuristic design," and "civil engineering structures." After obtaining search results, a 

manual screening process was carried out to select the most relevant and high-quality studies. A 

total of 196 works were chosen, comprising 154 journal papers, 19 conference contributions, 12 

chapters from academic books, 7 literature reviews, and 4 doctoral theses. Although the concept 

of structural optimization dates back over a century, its application in civil engineering has 

gained traction primarily in recent decades, especially due to advances in computing. Therefore, 

the publication window for this review was set from 1970 to 2020 to ensure comprehensive 

coverage of both foundational and modern developments. 

 

2.2 Keyword Identification Strategy 

To ensure precise and inclusive literature coverage, keyword selection followed an iterative 

refinement process. Initial searches were conducted using broad terms like “civil engineering 

structural optimization.” From these, a number of recent review papers were analyzed to extract 

frequently used terminology in the field. This guided the inclusion of more specific keywords 

such as “topology optimization,” “metaheuristic algorithms,” and “optimal design.” The final list 

of keywords was designed to encompass the breadth of structural optimization techniques 

relevant to civil engineering.  

 

3 Statistical Analysis of Selected Literature 

An analysis of the temporal distribution of the selected literature was conducted, categorizing the 

publications across five distinct time intervals, as visualized in Figure 2. The results clearly show 

a notable upward trend in research activity over time. Specifically, 88% of the total articles were 

released post-2000, and an even larger portion—73%—were published after 2010. This pattern 

strongly reflects the growing academic interest and ongoing advancements in structural 

optimization research within civil engineering. 

 

 

 

 

 

 

 

Figure 1: The research methodology of this study. 

Figure 2: Distribution of the selected articles regarding the publication year. 



 

To understand publication patterns across academic platforms, the sources of the selected works 

were examined. Figure 3 outlines the ten most frequently contributing journals. These top-tier 

journals collectively accounted for 82 of the total papers reviewed. Computers and Structures led 

the list with 21 contributions, followed by Structural and Multidisciplinary Optimization and 

Engineering Structures, each having published over 10 articles. This highlights the central role 

these journals play in disseminating cutting-edge research in this field. 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, a geographical analysis was carried out based on the institutional affiliation of the 

first author. Figure 4 illustrates the regional distribution. Asia emerged as the leading contributor 

with 79 papers, while Europe and North America followed with 66 and 36 publications, 

respectively. Combined, these three continents produced 92% of the reviewed studies, 

underscoring the concentration of research output in these regions [22]. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Figure 3. Number of selected articles published in the top ten journals. 

Figure 4: Distribution of selected articles by the continent of the first author’s research institution. 



 

This statistical review provides a foundational understanding of research dissemination, 

highlighting both the rapid growth in scholarly interest and the leading platforms and regions 

contributing to the advancement of civil engineering structural optimization.  

 

4 Purposes of Organizational Optimization 

4.1 Classification of Optimization Goals 

The reviewed literature on structural optimization in civil engineering reveals four principal 

categories of design goals: 

1. Economic Efficiency – Aiming to reduce overall construction or material expenses, 

typically by minimizing structural weight or volume to lower costs. 

2. Enhancement of Structural Capabilities – Focusing on improving functional attributes 

such as load resistance, vibration control, seismic durability, or aerodynamic efficiency, 

depending on environmental or usage requirements. 

3. Eco-efficiency – Centered on minimizing ecological footprints through strategies that 

reduce energy usage or carbon emissions across the structure’s lifecycle. 

4. Composite Objectives – Involving more than one goal from the categories above, often 

requiring a balance between cost, performance, and sustainability. 

A detailed summary of these categories and associated key studies is provided in Table 1 for 

further reference and comparative assessment. 

Optimization 

Objective 
Description Relevant Articles 

Cost Minimization 

Optimization for minimizing the 

total cost of civil engineering 

structures, usually achieved by 

reducing structure weight or volume. 

Barbieri, Cinquini [23]; Lin, Che 

[24]; Zhou and Rozvany [25]; Liang, 

Xie [26]; Ghasemi and Dizangian 

[27]; Ho-Huu, Nguyen-Thoi [28]; 

Zhao, Xu [29] 

Structural 

Performance 

Improvement 

Optimization for improving certain 

properties of civil engineering 

structures to meet functional 

requirements. 

Rahmatalla and Swan [30]; Natke 

and Soong [31]; Achtziger [32]; 

Wang [33]; Guest and Moen [34]; 

Uroš, Gidak [35]; Martin and 

Deierlein [36] 

Environmental 

Impact 

Minimization 

Optimization for reducing 

environmental impacts of civil 

engineering structures, such as 

greenhouse gas emissions and 

energy consumption. 

Yi and Malkawi [37]; Brown and 

Mueller [38]; Penadés-Plà, García-

Segura [39]; Mayencourt and 

Mueller [40] 



 

Optimization 

Objective 
Description Relevant Articles 

Multi-objective 

Optimization 

Optimization considering more than 

one of the above objectives, often 

combining cost, performance, and 

environmental factors. 

Bremicker, Chirehdast [41]; Ohsaki 

and Swan [42]; Paik and Raich [43]; 

Munk, Vio [44]; Choi, Oh [3]; Xia, 

Langelaar [45] 

 

An analysis of the selected articles reveals the distribution of structural optimization goals, as 

visualized in Figure 5. A significant proportion—62%—of the reviewed studies prioritizes 

minimizing project expenses. This often reflects the interests of stakeholders, particularly in 

terms of reducing the overall structural costs. A further 22% of the literature emphasizes 

enhancing structural capabilities, such as mechanical and dynamic resilience. Meanwhile, studies 

that simultaneously target multiple objectives, such as combining cost efficiency with 

performance gains, represent 14% of the articles. Only 2% of the literature focuses exclusively 

on reducing the ecological footprint of structures. One potential explanation is that strategies 

aimed at minimizing environmental impact, such as reducing embodied energy and carbon 

emissions, may inherently contribute to lower overall costs [39]. Consequently, these 

environmental considerations are more commonly embedded within multi-faceted optimization 

efforts, rather than pursued as standalone goals.  

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Temporal Evolution of Optimization Focus Areas 

The field of structural optimization in civil engineering has grown steadily over the years, with 

noticeable shifts in research themes over time. To assess these changes, the distribution of 

articles across different optimization objectives is examined over five distinct time intervals, as 

depicted in Figures 6a and 6b. Prior to the year 2000, scholarly work in this area was largely 

Figure 5: Number and proportion of articles for each optimization objective. 



 

concentrated on cost-saving approaches. Approximately 70% of the articles published in this 

early period targeted reductions in material quantity—either by minimizing structural volume or 

weight—as a means to lower construction expenses [46]. A smaller fraction of articles focused 

on enhancing structural behavior (17%) or tackled multiple objectives concurrently (13%). 

Within the early performance-focused literature, topology optimization was a widely used 

technique. This method involves removing underutilized elements from a design while meeting 

required constraints, thus optimizing system performance [31]. Despite the lack of 

standardization in performance criteria, several metrics were used in these studies, such as 

compliance [32,47], peak displacement, or maximum moment [48]. 

Regarding multi-objective studies, the earliest instances approached the problem by optimizing 

for different targets—such as compliance and weight—independently, before integrating these 

into a unified framework [41]. Some researchers addressed these trade-offs by converting multi-

dimensional goals into single-objective problems using scalar multipliers [49], while others 

embraced Pareto-based methodologies to retain distinct objectives within a solution set [50]. In 

addition, after 2000, structural optimization research expanded considerably. The number of 

articles surged from 17 (2006–2010) to 66 (2011–2015), reflecting a growing scholarly interest. 

Throughout these later timeframes, cost minimization remained the dominant focus, although its 

relative proportion declined compared to the pre-2000 period. In the post-2000 periods, cost-

related studies made up 54%, 59%, 67%, and 58% of the total articles in each respective interval. 

At the same time, interest in performance-based optimization also saw a steady rise, accounting 

for about 22% of all selected papers during this era. 

 

 

 

 

 

 

 

 

 

(a)                                                                                           (b) 

 

 

Studies centered on structural performance improvement gained relevance particularly in 

contexts where durability, safety, or seismic resistance were considered more crucial than simply 

reducing mass or cost [48]. Furthermore, multi-objective optimization continued to feature in the 

literature, though challenges such as computational intensity [50] and solution uncertainty [51] 

likely limited its broader adoption. This category constituted around 14% of the reviewed articles 

Figure 6: Number and proportion of articles with each objective in each time period: (a) number of articles, and (b) proportion of articles. 



 

post-2000, and the number of such papers fluctuated across the analyzed periods. Interestingly, 

while sustainability-focused optimization remains underrepresented (2% of total articles), recent 

data shows increasing interest. Of the four studies focused solely on environmental impact, three 

were published between 2016 and 2020—suggesting that this subfield may experience growth in 

the future as environmental concerns gain prominence in structural engineering [39]. 

 

4.3 Regional Distribution of Optimization Themes 

Research funding—whether sourced from governments or private entities—has a direct impact 

on the volume and focus of structural optimization studies across regions [52]. For the purpose of 

this geographical analysis, the articles were first classified by continent, following the 

"geographical scope" approach employed in prior reviews [53]. The analysis shows that Asia, 

Europe, and North America are the leading contributors to this field, which aligns with the data 

illustrated in Figure 5. Cost reduction appears to be the dominant focus in all three regions. 

However, in Europe and North America, the relative emphasis on cost is slightly lower compared 

to Asia. Notably, environmentally driven optimization objectives are represented only in 

European and North American research, while no such studies were found originating from Asia. 

Research output from other regions—namely Africa, South America, and Oceania—remains 

limited, with just two, five, and eight relevant publications, respectively. This suggests that 

structural optimization research is still in its infancy in these areas.  

Further granularity is achieved by analyzing article contributions at the national level. Out of 196 

collected papers, 37 countries were identified as contributors. Figure 8 highlights the top twelve 

countries in terms of research output. Iran, the United States, China, and Turkey are the most 

prolific, jointly accounting for 117 papers, or 60% of the total. In wealthier nations such as the 

United States, China, Australia, South Korea, Germany, Italy, Greece, Spain, and the United 

Kingdom, the objectives of optimization are more evenly distributed. These countries tend to 

invest in a balanced mix of cost efficiency, performance enhancement, and multi-objective 

strategies.  

 

 

 

 

 

 

 

 

 

 Figure 7: Distribution of articles with each objective in each continent. 



 

In contrast, in countries with developing economies like Iran, Turkey, and Brazil, the research 

focus is largely centered around cost reduction—likely reflecting financial constraints and 

practical priorities. Additionally, countries located in earthquake-prone regions, including the 

USA, China, and South Korea, have shown greater interest in performance-focused optimization. 

This pattern suggests that local environmental conditions, such as seismic activity, influence the 

selection of structural optimization goals [10]. Researchers in these zones appear to be especially 

concerned with improving a structure’s resilience to dynamic forces and extreme conditions. 

  

 

 

 

 

 

 

 

 

 

 

 

5 Structural Optimization Process 

In civil engineering, a variety of structural components such as beams, columns, and rods are 

subject to optimization; however, skeletal frameworks like trusses and frames represent the most 

commonly optimized structural forms. The optimization process involves several crucial 

elements that need to be addressed systematically. Initially, the modeling strategy employed for 

structural analysis and design forms the basis for classifying structural optimization into discrete 

and continuum approaches. Following that, the optimization problem must be precisely 

formulated by specifying the design variables, objective function(s), and any constraints. The 

choice of optimization technique—mathematical methods or programming algorithms—then 

plays a key role in effectively solving the problem. Finally, computational tools and design 

software platforms are essential for implementing these methods and conducting the design 

process. The upcoming subsections 5.1 and 5.2 explore these foundational aspects with reference 

to current literature and technological advancements. 

 

5.1 Approaches to Structural Modeling and Design Analysis 

Structural optimization is inherently iterative, requiring repeated evaluations of the structure to 

assess incremental improvements until an optimal design is achieved. Due to the high 

computational demand of this repetitive analysis, especially for complex large-scale structures, it 

Figure 8: Distribution of articles with each objective in major countries. 



 

is critical to employ analysis methods that are efficient in terms of computation time. The finite 

element method (FEM) is widely adopted for structural analysis, with simpler, coarse finite 

element models often favored over detailed models to reduce computational overhead. Another 

strategy involves simultaneous structural analysis and design integration, which streamlines the 

overall optimization process [22,54]. Based on the initial modeling technique, optimization can 

be divided into discrete optimization, where the structure is represented as distinct elements, and 

continuum optimization, which treats the structure as a continuous solid with variable topology. 

Discrete optimization is convenient for selecting cross-sectional sizes and nodal coordinates and 

is typically applied to size and shape optimization where the structural layout is predefined and 

fixed. This type of optimization is also referred to as non-topological or fixed-topology 

optimization, aiming to refine the shape or dimensions of the structure to improve performance 

criteria such as minimizing mass [1]. Representative examples of this approach can be found in 

studies [55–58]. In contrast, topology optimization often addresses connectivity and arrangement 

of structural elements to identify the best overall layout. Continuum optimization, which deals 

with material distribution within a solid domain, can potentially produce more innovative and 

efficient designs beyond typical truss or beam frameworks [42]. However, due to the increased 

complexity in problem formulation and programming challenges, continuum optimization 

remains less prevalent in civil engineering applications [47]. 

 

5.2 Defining the Structural Optimization Problem 

The formulation of a structural optimization problem involves defining three essential 

components within the design search space: design variables, objective function(s), and 

constraints [10]. Design variables represent the adjustable parameters of the structural system, 

which may be continuous—able to take any value within a range—or discrete—limited to 

specific values. The objective function quantifies the goal of the optimization, such as 

minimizing weight or maximizing stiffness. Constraints impose essential limits and requirements 

for safety, serviceability, or other design standards, and these constraints can be expressed as 

either equality or inequality conditions. Notably, equality constraints can be converted into pairs 

of inequality constraints to accommodate different optimization techniques; for example, h(X) = 

0 can be rewritten as h1(X) ≥ 0 and h2(X) ≤ 0 [22]. Additionally, constraints can be incorporated 

into the objective function using penalty functions, transforming constrained problems into 

unconstrained ones by penalizing infeasible solutions [59]. The search space is divided into 

feasible and infeasible domains, where feasible design points satisfy all constraints, and 

infeasible points violate one or more constraints. The overall optimization task is to find the 

design variables within the feasible domain that optimize the objective function while adhering 

to all constraints [56]. 

Minimize/Maximize :  f (X); Subject to : gi(X) ≤ 0, i = 1, 2, 3,, m; 

hj(X) = 0, j = 1, 2, 3, , p; 

X ∈ S. 

In structural optimization, the variable set typically comprises a vector X=[x1,x2,x3,...,xn] where 

n denotes the total number of design parameters. The optimization objective is symbolized as 

f(X), while gi(X) and hj(X) represent the inequality and equality constraints, respectively. Here, 



 

mmm and ppp correspond to the count of these constraints, and SSS defines the feasible design 

space. Structural optimization objectives can be broadly classified into four categories. The 

formulation of an optimization problem hinges on the goal being pursued. Establishing the 

objective function entails quantitatively defining the desired outcome within the confines of 

specific constraints. As a result, the representation of the objective may diverge from the actual 

target of the optimization effort. A frequently encountered objective in structural optimization is 

minimizing the overall cost, typically approximated through minimizing structural weight [60]. 

Consequently, optimizing for cost is often operationalized by seeking to reduce the total 

structural mass. This is because cost and weight are directly correlated in many contexts. 

However, some experts argue that weight alone does not provide an accurate estimate of cost, as 

lightweight structures can sometimes incur higher fabrication or material expenses [61]. Due to 

such discrepancies and the presence of uncertain parameters, few studies in civil engineering 

directly model cost as the objective function [46]. In size optimization problems, structural 

systems are generally segmented into components, each with a design variable that defines its 

cross-sectional area. This approach is based on the premise that the overall weight of a structure 

is dependent on these cross-sectional properties [60]. These models usually disregard variations 

in material distribution, allowing the objective function to be defined as follows [62]: 

n 

Minimize : W = ∑ γgAi Li 

i=1 

Here, the total weight WWW of the structure is computed as a function of the material density 

γ\gammaγ, gravitational acceleration g, design variables X={A1,A2,...,An} and the individual 

lengths Li of the structural elements. When it comes to shape optimization, the design variables 

are the coordinates of the nodes, and this technique is often coupled with size optimization for 

weight reduction [6,63,64]. In contrast, topology optimization focuses on determining the 

optimal configuration of connections between nodes, essentially deciding whether a structural 

element should exist between two points [65]. This process usually begins with an overly dense 

mesh of potential structural members, referred to as the "ground structure." As optimization 

proceeds, redundant components are systematically eliminated, yielding a more efficient design 

[19]. Here, a binary vector is used to define the topology: a variable value of 1 indicates a 

removable element, while 0 marks an essential component [66]. Furthermore, topology 

optimization is often integrated with size optimization to further minimize weight. Structural 

components with near-zero cross-sectional areas are considered superfluous and thus excluded 

from the final design [66]. In cost-driven optimization tasks, it is common to incorporate 

constraints related to stress and displacement, in accordance with various regional or national 

design standards. These include ACI Codes for concrete structures, Eurocode 2, AASHTO 

standards, and British Standards [10]. Another objective in structural optimization is to enhance 

performance, which lacks a universally accepted quantifier. Instead, a variety of performance 

indicators such as stiffness [31], compliance [67], strain energy [68], and displacement under 

static loads [69] are used to model the objective function. Most studies seeking to enhance 

structural performance utilize topology optimization. This preference likely stems from the fact 

that topology optimization inherently seeks optimal distribution of material, which can 

subsequently be refined through shape or size adjustments [67]. In these cases, compliance 



 

minimization is typically employed to enhance structural stiffness. The objective function can be 

represented as follows [70]: 

Minimize : C = FT × u(x) 

Here, C denotes structural compliance, FFF is the load vector applied to the structure, and u is 

the displacement vector. Compared to weight-centric optimization, performance optimization 

involves a more diverse set of constraints due to varying performance demands. For instance, to 

mitigate the effects of dynamic loading, natural frequency constraints are often applied [71]. 

Additional mechanical constraints such as stress limits, displacement bounds, stiffness 

thresholds, and buckling resistance are also used. Moreover, restrictions on material usage—

either by volume or weight—are sometimes imposed to manage overall project cost [68]. A 

relatively underexplored goal in structural optimization is minimizing environmental impact. 

Only a limited number of studies address this aim. In such research, environmental impact is 

typically assessed based on metrics such as carbon emissions or embodied energy. Reducing 

material consumption is the primary method used to lower these environmental costs [39]. 

Similar to cost minimization, structural designs under this objective must also comply with 

conventional safety and serviceability constraints. In real-world civil engineering practice, there 

is an ongoing challenge to reduce costs while maximizing safety and functionality. These 

objectives often compete, meaning that gains in one area may lead to compromises in another 

[1]. To address this, many studies now explore multi-objective optimization techniques. These 

approaches seek to find a suitable balance between conflicting objectives, often focusing on two 

competing goals [72]. Multi-objective optimization distinguishes itself from single-objective 

methods by incorporating multiple target functions simultaneously. For instance, a study might 

aim to minimize both the weight and deflection of a structure [73]. Naturally, such problems are 

more computationally intensive and necessitate advanced solution strategies [72]. A key 

characteristic of multi-objective optimization is the absence of a single global optimum that 

satisfies all objectives equally. Instead, the solution set forms a Pareto front, representing various 

trade-offs among the objectives [74]. Mathematically, a multi-objective optimization problem 

can be framed as [1]: 

Minimize the vector function 

f(X) = [ f1(X), f2(X), f3(X), fk(X)]T 

Subject to : gi(X) ≥ 0, i = 1, 2, 3, , m; 

hj(X) = 0, j = 1, 2, 3, , p; 

X ∈ S. 

In multi-objective optimization, the goal is to identify a set of optimal trade-offs rather than a 

single best solution. The objective functions are denoted by f(X), while gi(X) and hj(X) represent 

the inequality and equality constraints, respectively. The variable vector X=[x1,x2,...,xn] spans 

the design space SSS. The outcome is a group of non-dominated solutions forming the Pareto 

optimal set, which, when plotted against performance criteria, generates the Pareto front [74]. 

This graphical representation supports informed trade-off decisions. Proper problem formulation 

defines variables, constraints, objectives, and the solution domain. 

 



 

5.3 Optimization Techniques and Methods 

Structural optimization has been one of the key focus areas within engineering research 

throughout the 20th century [75]. A landmark contribution in this domain was made by Kuhn 

and Tucker in 1951 [76], who laid the groundwork for mathematical programming approaches 

by introducing essential techniques such as the Lagrange multipliers and the equivalence 

theorem. These foundational concepts significantly influenced the development of optimization 

methodologies over the years. More recently, both mathematical programming and 

computational search methods have become the predominant strategies employed for efficiently 

locating optimal design solutions in structural systems. Typically, the optimization process 

initiates with an initial guess and iteratively adjusts the design to enhance the objective function 

until convergence is met [22]. 

In structural optimization within civil engineering, two principal classes of methods are 

commonly adopted: gradient-based strategies and heuristic-based algorithms [61]. Gradient-

based methods utilize directional information, referred to as gradients, to navigate the design 

space toward optimality. These techniques are generally categorized into four groups: linear 

programming, non-linear programming, optimality criteria, and feasible direction methods [61]. 

Linear programming applies when both the objective function and constraints are linear, while 

non-linear programming is used if any function is non-linear. Optimality criteria methods create 

specialized algorithms that optimize structures under constraints like stiffness, often relying on 

structural mechanic’s theories [77]. These methods frequently involve computing Lagrange 

multipliers, which help identify local extrema under equality constraints, including stress and 

displacement limitations. Feasible direction methods, on the other hand, start from a point that 

complies with all constraints and advance in a direction that both respects the constraints and 

reduces the objective function.  

Xi+1 = Xi + λSi 

The movement from point Xi to Xi is guided by a direction vector Si and a predefined step 

length λ, ensuring the new point remains feasible. The direction Si must allow improvement 

without violating constraints, and it must contribute to decreasing the objective function [78]. To 

manage computational expense, approximation techniques are often integrated into gradient-

based optimization. These approximations initially simplify the problem through analysis and are 

then refined using optimization procedures. The resulting solution is used to inform subsequent 

design iterations [22]. These traditional methods, often referred to as classical or conventional 

approaches, played a vital role in early civil engineering applications. For instance, Chan [6] 

utilized linear programming for multi-load structural optimization, while Dobbs and Felton [79] 

applied a steepest descent method to optimize truss geometries. Lin et al. [24] developed the α-β 

bi-factor iterative method, classified under feasible direction methods, to achieve weight 

reduction under dynamic and static load conditions. Nevertheless, several studies have noted 

important limitations in these techniques, which generally fall into three categories. 

 In the context of civil engineering structural optimization, gradient-based methods have 

historically demonstrated competent performance in specific scenarios. However, their 

effectiveness in achieving a global optimum is often questioned due to inherent limitations. 

These techniques are highly sensitive to the initial design configuration and the direction of the 

search, commonly known as the gradient. Consequently, in problems with multiple local 

optima—a common scenario in structural optimization—these methods are prone to settling at 



 

suboptimal solutions rather than exploring the entire design space to reach a true global optimum 

[6]. This tendency to become confined within local optima reflects a significant drawback, 

particularly when complex structural systems with intricate design landscapes are involved.n 

Moreover, these approaches necessitate the computation of gradient information, which often 

involves analytical derivatives or computationally intensive numerical approximations. This 

requirement significantly complicates their application in cases where constraints are highly 

nonlinear, non-differentiable, or discontinuous [80]. For large-scale or real-world engineering 

problems, where constraint relationships are rarely simple or linear, the computational burden 

becomes substantial, thereby reducing the practical feasibility of using gradient-based 

approaches. Furthermore, these algorithms tend to offer limited flexibility in handling 

comprehensive and realistic sets of design constraints. Most are tailored to specific types of 

problems and lack the adaptability required to encompass the full spectrum of engineering 

constraints encountered in advanced structural optimization cases [6]. 

To overcome these challenges, a new category of solution strategies known as heuristic methods 

has emerged. Heuristic algorithms are based on intelligent guesswork and problem-specific rules 

rather than exact mathematical formulations. They often incorporate learning-based approaches, 

such as artificial neural networks [81] and support vector machines [82], which iteratively refine 

solutions through feedback mechanisms [83]. While these methods are generally more intuitive 

to implement and capable of handling complex systems more efficiently, they too face certain 

limitations. Notably, their performance can be highly problem-dependent, and without 

mechanisms to escape local optima, they might fail to locate global solutions in non-convex 

design spaces [84]. To address these shortcomings, researchers have advanced a more 

generalized class of optimization strategies known as metaheuristic algorithms. Unlike 

traditional heuristics, metaheuristics are typically problem-independent and incorporate 

stochastic elements that enable broader exploration of the design space. They effectively balance 

local refinement and global search capabilities by combining randomization with directed search 

strategies [83]. These methods draw inspiration from natural and artificial processes, such as 

biological evolution, swarm intelligence, musical improvisation, and collective behavior. 

Examples include genetic algorithms (GA) [85], harmony search (HS) [86], firefly algorithm 

(FA) [87], artificial bee colony (ABC) [88], differential evolution (DE) [89], Tabu search (TS) 

[90], teaching–learning-based optimization (TLBO) [91], particle swarm optimization (PSO) 

[92], bat algorithm (BA) [93], cuckoo search (CS) [94], and the Jaya algorithm [95]. 

Metaheuristics are commonly categorized based on their inspiration source (nature-based vs. 

non-nature-based), population strategy (individual vs. group-based), and adaptability to changing 

objective functions (static vs. dynamic) [96]. 

Despite their diverse origins, all metaheuristic methods typically share two critical mechanisms: 

exploration and exploitation [16]. Exploration allows algorithms to sample broadly across the 

design space, ensuring solution diversity, while exploitation refines promising solutions to 

converge toward optima. An effective interplay between these two elements is crucial to avoid 

premature convergence and ensure robustness across a wide range of structural optimization 

problems. Metaheuristic algorithms offer several advantages over traditional methods. Firstly, 

they are adept at addressing combinatorial problems involving both discrete and continuous 

variables. Secondly, they circumvent the need for gradient information, which simplifies their 

application in highly nonlinear or implicit constraint scenarios. Thirdly, metaheuristics operate 

effectively without requiring explicit convexity or analytical relationships between design 



 

variables and constraints. Lastly, they are often more capable of identifying global optima, 

making them particularly valuable in complex structural optimization [16]. These benefits have 

led to numerous successful implementations in the field. For instance, Kociecki and Adeli [97] 

developed a two-stage GA to optimize the size and layout of frame structures, reducing weight 

while considering topological constraints. Similarly, Mortazavi and Toğan [71] integrated PSO 

into truss structure optimization to enhance dynamic performance and reduce weight. Bekdaş et 

al. [62] demonstrated the utility of the flower pollination algorithm in achieving size 

optimization in trusses. 

Nevertheless, metaheuristics are not without drawbacks. As noted by Sörensen [17], many 

metaheuristic algorithms involve complex mechanisms and have only been tested on relatively 

small problem instances, raising questions about their general applicability to large-scale 

structures. While they can deliver excellent results in controlled settings, this does not guarantee 

superior performance over more traditional constructive heuristics. Furthermore, Saka et al. [16] 

argue that the computational demands of metaheuristics can be substantial, particularly for 

complex problems involving numerous loading scenarios. Mahdavi et al. [18] also highlight that 

standard metaheuristics often struggle with high-dimensional design spaces due to the vast and 

intricate nature of such landscapes, which impairs their ability to efficiently explore and 

optimize. As a result, recent advancements have focused on improving existing metaheuristic 

algorithms. These enhancements typically aim to boost efficiency and accuracy by leveraging the 

specific strengths of each method. For example, Cheng et al. [98] introduced a hybrid version of 

HS that integrates PSO's search capabilities and localized neighborhood exploration, replacing 

the original algorithm's randomization elements while preserving its key memory and adjustment 

features. This modified approach achieved superior convergence rates and solution precision. 

Arjmand et al. [99] developed another hybrid model by combining an enhanced dolphin 

echolocation algorithm with ant colony optimization, capitalizing on the strengths of both to 

enhance solution efficiency. Cao et al. [100] also proposed four distinct ways to improve PSO: 

optimizing the balance between global and local searches, modifying the algorithm's topology 

structure, merging it with other metaheuristics, and integrating it with classical gradient-based 

methods. These adaptations improve both the breadth of search and convergence speed while 

minimizing error margins.  

Apart from algorithmic improvements, another strategy to enhance optimization efficiency is to 

minimize the frequency and complexity of objective or constraint evaluations during the 

optimization cycle. However, as Cao et al. [100] caution, this may lead to results that deviate 

from intended objectives and compromise design integrity, and thus this approach is not further 

elaborated in this work. Finally, beyond gradient-based and heuristic/metaheuristic techniques, 

another class of optimization approach exists—reliability-based design optimization (RBDO). 

These methods incorporate uncertainties in design variables, material properties, load conditions, 

and structural behavior to achieve an optimal trade-off between performance and reliability 

[101]. RBDO ensures minimum safety thresholds are met, providing engineers with probabilistic 

assurances during design [102]. The primary RBDO strategies include the two-level, single-loop, 

and decoupled approaches [101]. Despite their appeal, the practical application of RBDO in civil 

engineering remains constrained by challenges such as high computational demand due to 

repetitive reliability assessments and the difficulty in computing probabilistic constraint 

gradients [103]. 



 

A summary of some recently proposed improved metaheuristic algorithms is presented in table 

2: 

Year Involved Algorithms Inspiration / Description Reference 

2012 

Efficient Harmony Search 

(EHS) and Self-Adaptive 

Harmony Search (SAHS) 

Proposed improved HS algorithms to 

reduce parameter dependency and 

enhance exploitation and exploration 

capacities for size optimization. 

Degertekin [20] 

2016 

Enhanced GA with 

Multiple Populations 

(EGAwMP) 

Combined GA with multiple populations, 

radial-basis neural network, and a new 

design strategy to increase convergence 

of optimal designs. 

TALASLIOGLU 

[104] 

2017 
Accelerated Firefly 

Algorithm (AFA) 

Improved standard firefly algorithm by 

reducing randomness and scaling random 

term to increase convergence rate. 

Baghlani, 

Makiabadi [105] 

2017 
Improved Ray 

Optimization (IRO) 

Modified solution generation and applied 

feasibility enforcement to enhance 

original ray optimization efficiency. 

Kaveh and 

Ghazaan [106] 

2017 
Hybrid GA and PSO 

(HGAPSO) 

Divided population based on fitness; PSO 

used for better half, GA for worse half to 

improve search capability. 

Maheri, Askarian 

[107] 

2017 

Colliding Bodies 

Optimization (CBO) and 

Enhanced CBO (ECBO) 

CBO based on one-dimensional collision; 

ECBO adds memory for performance 

improvement without extra computational 

cost. 

Kaveh and 

Moradveisi [108] 

2017 
Integrated Particle Swarm 

Optimization (IPSO) 

Combined PSO with improved fly-back 

mechanism and weighted particles for 

structural weight minimization under 

frequency constraints. 

Mortazavi and 

Togan [71] 

2017 

Genetic Algorithm with 

Domain Trimming 

(GADT) 

Enhanced GA with domain-trimming to 

improve global search capacity; applied 

to design of offshore wind turbine 

support structures. 

AlHamaydeh, 

Barakat [109] 

2017 

Whale Optimization 

Algorithm (WOA) and 

Enhanced WOA (EWOA) 

Inspired by whale hunting behavior; 

EWOA improves accuracy, reliability, 

and convergence rate over standard 

WOA. 

Kaveh [110] 



 

Year Involved Algorithms Inspiration / Description Reference 

2017 

Adaptive Hybrid 

Evolutionary Firefly 

Algorithm (AHEFA) 

Automatically adapts parameters for 

effective global-local search trade-off; 

uses elitist selection to retain best 

individuals. 

Lieu, Do [64] 

2017 
Discrete Advanced Jaya 

Algorithm (DAJA) 

Generates new trial designs with descent 

directions; overcomes lack of parameter 

tuning in original Jaya algorithm. 

Degertekin, 

Lamberti [66] 

    

5.4 Computational Tools and Design Platforms 

The advancement of computational technologies has significantly transformed how structural 

optimization is conducted, shifting from laborious manual calculations to streamlined, software-

based solutions. Previously, structural design and analysis relied heavily on trial-and-error 

approaches, which were not only time-consuming but also highly susceptible to mistakes. With 

the evolution of digital tools, engineers now have access to sophisticated platforms that facilitate 

modeling, analysis, and optimization. Popular applications such as SAP2000 and ETABS have 

become widely adopted due to their enhanced computational speed and accuracy, delivering 

more reliable outcomes for various structural configurations [111]. However, these advantages 

are not universal across all platforms. Certain tools demonstrate limited capability when applied 

to large-scale or complex structural systems, resulting in reduced efficiency [10]. Similarly, 

software grounded in building information modeling (BIM) principles often encounters 

challenges related to low interoperability, which can hinder seamless data exchange between 

programs [112]. In structural optimization workflows, the choice of software is a crucial factor 

influencing both accuracy and computational performance. Once the problem and optimization 

strategy are clearly defined, the next stages typically include solution encoding, numerical 

computation, and design validation. The encoding of design variables—either in binary or real-

number formats—depends largely on the nature of the selected metaheuristic algorithm [1].  

Optimization tasks generally require two categories of software: one to execute the optimization 

algorithms and another to manage structural modeling and design. The computational program 

generates candidate solutions in iterative cycles, with each cycle producing new sets of design 

variable values. These variables are then imported into the design software to update the model's 

geometry. Upon achieving convergence, designers identify the optimal solution by examining 

the feasible range of design variables through structural analysis based on pre-established criteria 

[113]. MATLAB remains a preferred computational tool in this domain due to its robust 

programming and numerical processing capabilities. Several notable applications underscore this 

point: Zhou et al. [114] developed a modified BESO approach using MATLAB, and Zegard and 

Paulino [115] created GRAND3—a MATLAB-based tool—for applying the ground structure 

method in 3D topology optimization. In practice, design software like ETABS, SAP2000, or 

ANSYS is typically used to carry out structural analysis, with BIM platforms often requiring 

data translation before integration with finite element analysis tools [10]. More recently, efforts 

have been made to streamline the entire optimization cycle within a single platform. For 

instance, Sotiropoulos and Lagaros [113] constructed an integrated system where SAP2000 



 

directly interfaces with MATLAB’s fmincon function, eliminating the need for separate software 

or data conversion steps. Despite limited coverage in existing literature, computational 

environments and platforms are vital to achieving optimal structural designs. While current tools 

are generally effective, there remains a strong demand for more integrated and high-performance 

systems to enhance computational efficiency and ensure better data compatibility.  

 

6 Limitations and Future Research Directions 

In recent decades, advancements in theoretical approaches and computational techniques have 

significantly driven progress in structural optimization within civil engineering. Structural 

optimization today spans various dimensions, including the size, shape, and topology of 

structural systems. Objectives have diversified, ranging from cost reduction and improved 

mechanical performance to minimizing environmental footprint and addressing multiple goals 

simultaneously. Furthermore, the adoption of metaheuristic algorithms has greatly enhanced the 

optimization process in terms of precision and computational efficiency. Despite this progress, 

several challenges and unresolved issues remain. This section outlines the principal limitations 

and suggests directions for future investigations. 

 

6.1 Weighting Strategies in Multi-Objective Optimization 

As previously highlighted, multi-objective optimization (MOO) has become a vital focus within 

civil engineering, enabling trade-offs among competing goals to meet diverse design 

requirements. However, challenges persist. MOO problems typically yield a set of non-

dominated solutions known as the Pareto front, but choosing the most appropriate solution from 

this set remains difficult. Additionally, all reviewed studies have only addressed dual-objective 

scenarios; optimization involving three or more objectives has yet to be fully explored. Several 

strategies have been developed to tackle the limitations of Pareto-based optimization. One such 

method is the compromise solution approach, which introduces a theoretical ideal point and aims 

to minimize the deviation from this target [116]. Nonetheless, this approach requires 

dimensionless objectives to assess proximity accurately, which is not always feasible [116]. 

Another prevalent strategy involves incorporating the preferences of stakeholders via weighting 

schemes. Depending on when the preferences are introduced, these methods are categorized into 

three types: a priori, interactive, and a posteriori [117]. In a priori methods, weights are 

assigned to each objective before optimization begins. Common techniques under this category 

include the linearly weighted sum method [118], the global criterion method [116], and scalar 

performance-based criteria [119]. For example, Sanaei and Babaei [120] applied the weighted 

sum approach to perform simultaneous shape and topology optimization. This technique 

transforms a multi-objective problem into a single-objective one using weighted coefficients for 

each goal. Interactive approaches gather input during the optimization process, though their use 

in structural optimization is limited due to the potential inconsistency in human judgment [117]. 

On the other hand, a posteriori approaches incorporate preferences after the Pareto set is 

generated. For instance, Zavala et al. [1] employed this method by approximating the Pareto 

front first, and then refining the solution based on user input. 



 

Despite these efforts, weighting methods remain inherently subjective. Selecting appropriate 

weights often depends on decision-makers’ intuition, which can vary widely across projects. 

Moreover, not all stakeholders are capable of expressing clear preferences, particularly when 

facing trade-offs between conflicting goals [116]. Future research should aim to establish a 

robust framework for assigning weights in structural optimization. This framework could offer 

recommended weight ranges tailored to specific algorithms, structural codes, and constraints, 

helping practitioners choose suitable parameters even in the absence of clear preferences. Such a 

system would also support problems with more than two objectives, allowing them to be treated 

within a unified optimization framework. 

 

6.2 Challenges in Objective Quantification 

To achieve optimal solutions, structural objectives must be translated into quantifiable metrics. 

Common metrics include weight for cost estimation, and compliance or strain energy for 

evaluating stiffness. In principle, any structural characteristic, including aesthetics, can be 

optimized if appropriately measured [121]. However, translating some objectives into numerical 

form remains problematic. As Aldwaik and Adeli [61] noted, structural weight does not 

comprehensively reflect total cost. While lighter structures may lower material expenses, they 

may not fully account for transportation, labor, and installation costs. For example, Kaveh [122] 

proposed a more detailed cost model incorporating fabrication time, weight, and web cutting 

costs for optimizing castellated beams. Sharafi et al. [123] combined material and formwork 

costs in reinforced concrete beam design. 

Parametric mixed-integer nonlinear programming (MINLP) has also been adopted to handle both 

continuous and discrete variables in structural cost optimization [124–126]. Algorithms such as 

the outer approximation/equality relaxation (OA/ER) and generalized Benders decomposition 

(GBD) [127] are commonly applied. These methods allow various factors—material unit prices, 

labor wages, imposed loads, and structural spans—to be integrated into one objective function. 

However, MINLP models are computationally intensive due to their nonlinear and combinatorial 

nature, limiting their widespread use [127]. To address this, future studies should focus on 

developing standardized cost estimation systems. These systems should incorporate 

comprehensive datasets covering material, labor, transportation, and construction methods (e.g., 

precast vs. cast-in-place), along with component standardization. Additionally, better models are 

needed for capturing mechanical and aesthetic performance, enabling these factors to serve as 

meaningful optimization objectives. 

 

6.3 Generalizability of Optimization Algorithms 

Many studies aim to develop optimization algorithms with improved convergence and 

performance. However, a unified benchmarking framework for comparing algorithm efficiency 

and robustness is lacking. For instance, Kaveh et al. [128] compared seven metaheuristic 

algorithms across three steel frame configurations. Performance rankings varied between cases, 

and no single algorithm consistently outperformed others. Convergence behavior also differed, 

with TEO, TLBO, and WEO often showing faster convergence, albeit inconsistently. These 

variations reveal that algorithm performance is context-dependent. An algorithm optimized for 



 

one structural configuration may not perform well on another. Moreover, the lack of 

standardized test cases hampers objective comparisons between newly developed algorithms. 

Consequently, future research should focus on creating a benchmarking platform for algorithm 

validation. Structural optimization tasks could be categorized by structure type, scale, or 

complexity. Within each category, standard problems and reference algorithms should be 

defined. This would allow consistent evaluation of new algorithms by comparing their 

performance against known baselines. Ultimately, such a framework would drive the 

development of more versatile and reliable optimization tools. 

 

7 Conclusion 

This review thoroughly examined the existing body of literature on structural optimization within 

civil engineering. A total of 196 pertinent articles were gathered from Google Scholar, spanning 

from 1970 through 2020. These papers were subjected to statistical analysis focusing on 

publication year, article type, journal distribution, geographical origins, and the primary goals of 

optimization. Trends over time and across different regions were carefully evaluated, revealing a 

steady increase in research output, particularly in countries with strong governmental funding 

support. Among various optimization aims, cost reduction remains the dominant focus; however, 

recent years have seen a rapid rise in studies targeting enhancements in structural performance 

and multi-objective optimization approaches. The review further detailed the structural 

optimization procedure by categorizing the collected works into four key thematic areas: 

minimizing costs, improving structural behavior, reducing environmental impacts, and multi-

objective optimization. The process itself involves four fundamental phases: structural analysis 

and modeling, optimization problem formulation, choice of optimization techniques, and the 

utilization of computational platforms and software tools. Initial modeling approaches typically 

fall into two categories—discrete and continuum optimization. Formulating the optimization 

problem includes identifying design variables (such as cross-sectional dimensions, node 

coordinates, and element connectivity), objective functions (like minimizing total weight or 

strain energy), and constraints that ensure safety and serviceability, including stress limits and 

allowable displacements. Metaheuristic algorithms, grounded in mathematical programming, 

have gained prominence for delivering improved convergence speeds and solution accuracy 

compared to traditional methods, with many studies focusing on developing new or enhanced 

algorithms. 

In terms of implementation, optimization methods are integrated within computing environments 

such as MATLAB for iterative solution finding, and the resulting designs are often evaluated 

using structural design software like ETABS. Some integrated platforms streamline this process 

by eliminating the need for data transfer between tools. Despite these advancements, current 

research still faces notable limitations. Key challenges include establishing weighting methods to 

transform multi-objective optimization problems into single-objective ones, developing 

standardized metrics for accurately quantifying optimization goals, and improving the 

generalizability of metaheuristic algorithms. The latter is important because algorithm 

performance varies with different problem types, highlighting the need for problem classification 

and benchmark systems to guide future algorithm development. In summary, this article 

contributes significantly by offering a comprehensive overview of civil engineering structural 

optimization research, analyzing publication patterns over time and space, explaining the core 



 

components of the optimization process, and identifying research gaps while suggesting future 

directions. It addresses the deficiency of a detailed review in this domain and provides valuable 

insights for advancing structural optimization studies. 
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