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Abstract: 

This research explores how economic uncertainty acts as a critical intermediary linking business cycles to 

herding behavior among investors in financial markets. Building upon a standard stochastic differential 

equation framework that captures the dynamics of stock returns, we develop a concise theoretical model 

and validate it through empirical investigation. In our analysis, the gross domestic product (GDP) growth 

rate serves as a proxy for business cycle fluctuations, while the power-law exponent represents the degree 

of herding behavior. Our findings reveal that herding tendencies intensify during periods of economic 

downturn, compared to expansionary phases. This phenomenon is primarily attributed to heightened 

economic uncertainty during recessions, which amplifies psychological biases and collective behavior in 

the stock market. The empirical evidence aligns closely with the predictions offered by the quantum 

modeling approach, underscoring its applicability in behavioral finance contexts. 
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Introduction 

In the 21st century, stock trading has become predominantly digital, with electronic platforms replacing 

traditional floor-based exchanges. By the close of 2014, only around 15% of trading activity on the New 

York Stock Exchange was conducted on the floor, with the vast majority executed electronically (Hiltzik, 

2014). This transition to anonymous electronic trading platforms suggests a higher degree of autonomy 

among trades. Nevertheless, empirical evidence consistently shows that market participants often imitate 

the actions of others—a phenomenon widely recognized in financial literature as herding behavior. Such 

behavior frequently contributes to increased volatility in stock markets, manifesting in amplified 

fluctuations in asset returns (Cont & Bouchaud, 2000; Orléan, 1995; Banerjee, 1993; Topol, 1991). 

Consequently, identifying the underlying causes of herding in financial markets is of paramount importance 

for policymakers, regulators, and market participants alike. In this study, we adopt a slightly modified 

conceptualization of herding. Rather than focusing solely on central clustering behavior among investors, 
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we examine herding through the lens of distributional extremes, specifically using the scaling properties 

captured by a power-law exponent. While traditional definitions emphasize investor convergence toward 

the mean—grouping around the most common positions—we highlight the presence of “local” herding, 

where investors at the tails of the distribution also display collective behavioral patterns with notable 

regularity. 

 

Prior studies have typically interpreted herding as high levels of co-movement in asset returns, often using 

dynamic correlation metrics across different market segments or time periods (Chiang et al., 2007; Boyer 

et al., 2006). Alternative approaches involve analyzing investor responses to extreme market events, 

particularly to assess whether clusters of participants follow prevailing trends (Sibande et al., 2021; Kumar 

et al., 2021; Bouri et al., 2019, 2021; Demirer et al., 2019; Balcilar et al., 2017; Galariotis et al., 2015; 

Chiang & Zheng, 2010; Chang et al., 2000; Christie & Huang, 1995). While these studies have made 

substantial contributions, they have generally focused on statistical relationships rather than exploring 

business cycles as a root cause of herding behavior. Our research bridges this gap by examining herding 

behavior in stock returns using insights derived from the field of physics. Financial markets, much like 

physical systems, exhibit universal patterns, especially in systems with many interacting agents. Several 

“microscopic” models have been developed to account for these dynamics (Shalizi, 2001; Lux & Marchesi, 

1999). One salient feature is the presence of heavy-tailed return distributions—i.e., distributions with fatter 

tails than the normal distribution (Mantegna & Stanley, 1995; Lux, 1996). Numerous theoretical models 

attribute these fat tails to collective behavioral patterns, especially those induced by herding (Banerjee, 

1993; Topol, 1991). Seminal works by Cont & Bouchaud (2000), Orléan (1995), and others show that 

imitation among market participants leads to significant fluctuations in aggregate demand and to power-

law-distributed returns. 

The degree of herding can be quantitatively represented by the power-law exponent in the return 

distribution: smaller exponent values are indicative of stronger herding. This framework has been 

empirically verified across various domains, including stock returns (Plerou et al., 1999; Gopikrishnan et 

al., 1999; Nirei et al., 2020), trading volumes (Gabaix et al., 2006; Gopikrishnan et al., 2000), and even 

commodities (Joo et al., 2020). Parallel theoretical developments have attempted to explain power laws in 

firm sizes (Ji et al., 2020; Luttmer, 2007) and trade volumes (Nirei et al., 2020). However, relatively few 

studies have investigated how macroeconomic variables—particularly business cycles and economic 

uncertainty—drive changes in the power-law exponent and thus influence herding behavior. Our 

contribution lies in positing economic uncertainty as a pivotal mechanism connecting business cycle phases 

to variations in herding intensity. We present a streamlined theoretical model that incorporates quantum 

mechanics concepts to explain the emergence of power-law distributions in stock returns. The modeling 

process begins with the Fokker–Planck (FP) equation to represent the temporal dynamics of return 

distributions and proceeds to derive a Schrödinger-like equation under an empirically informed potential 

function (Ahn et al., 2017). The solution yields a power-law distribution in the tails of returns and predicts 

a positive association between business cycle expansions and the power-law exponent. A higher exponent 

implies less intense herding, and conversely, a lower exponent indicates stronger herding activity. 

This quantum-inspired approach provides novel insights that complement and extend classical models 

based on random walks (Bartiromo, 2004; Ma et al., 2004), quantum harmonic oscillators (Ahn et al., 2017; 

Ye & Huang, 2008), quantum wells (Pedram, 2012; Zhang & Huang, 2010), and quantum Brownian motion 

(Meng et al., 2016). By integrating economic uncertainty into the model, we provide a coherent explanation 

of how macroeconomic conditions influence investor psychology and collective behavior. Empirically, we 

assess whether herding behavior is negatively correlated with the business cycle—i.e., more pronounced 



during recessions and subdued during booms. Since business cycles are closely tied to fluctuations in 

economic growth, they naturally align with changes in economic uncertainty. It is widely accepted that 

recessions are periods of heightened uncertainty (Bloom, 2014), and in such times, investors often resort to 

mimicking others due to increased information asymmetry. This uncertainty reduces confidence in 

individual asset valuations and magnifies behavioral biases (Alhaj-Yaseen & Yau, 2018; Park & Sabourian, 

2011; Devenow & Welch, 1996), especially among those trading at the extremes—thereby increasing 

herding intensity. Our findings confirm these theoretical expectations: herding behavior is indeed more 

prevalent during economic downturns than during expansions, with economic uncertainty serving as a key 

explanatory variable for this relationship. 

 

Data and Methodology 

Data Description 

Our empirical investigation is based on a sample comprising 137 U.S. firms that were continuously listed 

on the Standard & Poor’s 500 (S&P 500) index over the period from January 1992 to December 2021. 

Firms that entered or exited the index during the sample window were excluded to eliminate potential 

distortions associated with abnormal trading activities linked to such index transitions (Chen et al., 2004; 

Lynch & Mendenhall, 1997; Beneish & Whaley, 1996; Harris & Gurel, 1986; Shleifer, 1986). This selection 

strategy ensures a stable panel of firms and minimizes event-driven volatility in the data. Daily stock return 

data were obtained from the Center for Research in Security Prices (CRSP), resulting in 1,031,914 firm-

day observations. To account for heterogeneity in return volatility across individual stocks, we normalize 

the daily returns by subtracting each firm’s mean return and dividing by its standard deviation over the 

entire sample period (Feng et al., 2012; Gabaix et al., 2003). In addition to return data, we incorporate 

macroeconomic indicators to analyze the relationship between market behavior and broader economic 

conditions. Yearly recessionary periods are identified using indicators provided by the National Bureau of 

Economic Research (NBER), while seasonally adjusted U.S. real Gross Domestic Product (GDP) growth 

rates are sourced from the Federal Reserve Economic Data (FRED). To proxy economic uncertainty, we 

utilize the forecaster uncertainty measure proposed by Bloom (2014), which is defined as the median of the 

subjective variances reported by economic forecasters. These data, reflecting annual average uncertainty 

levels, are retrieved from the Survey of Professional Forecasters maintained by the Federal Reserve Bank 

of Philadelphia.  

Table 1 summarizes the descriptive statistics of our primary variables. The mean daily stock return during 

the sample period was 0.060%. Over the 30-year timeframe, the U.S. economy experienced four official 

recessions, encompassing major crises such as the Dot-com Crash, the Global Financial Crisis, and the 

COVID-19 pandemic. The average annual real GDP growth rate was 2.518%. Forecast uncertainty 

exhibited a sample range from 0.290 to 0.538, with a mean of 0.418 and a standard deviation of 0.064, 

suggesting a relatively symmetric distribution around the mean. These data provide a robust foundation for 

examining the empirical relationship between macroeconomic dynamics, economic uncertainty, and 

investor herding behavior in the stock market. 

Table 1 Descriptive 
statistics 

 

Variable Obs Mean Std Min Max 

Return (%) 1,031,914 0.060 1.987 — 61.047 87.73
6 

NBER recession indicator 30 0.133 0.346 0 1 



Annual GDP growth (%) 30 2.518 1.871 — 2.775 6.10

0 

Forecaster uncertainty 30 0.418 0.064 0.290 0.53

8 

 

Power law exponent 

The power law distribution is a well-established statistical feature of asset returns in financial markets 

(Gabaix, 2009). One important implication of power law behavior is the disproportionately high frequency 

of extreme return events, which significantly exceed what would be predicted by a normal (Gaussian) 

distribution. As Gabaix et al. (2005) point out, financial crashes and other large fluctuations are not 

anomalies within a power-law framework but rather expected manifestations of its tail behavior. Thus, 

analyzing tail distributions is crucial for understanding systemic features of financial markets, including 

investor herding. 

A power law distribution can be described by its counter-cumulative distribution function (or survival 

function), which follows the general form: 

P(X ≥ x) = 1 − F(x) = kx−ζ ,  (1) 

where P(X≥x) is the probability that a random variable X exceeds a given value xxx, F(x) is the cumulative 

distribution function, k is a constant, and ζ denotes the power law exponent. Taking the logarithm of both 

sides, we obtain a linear expression suitable for empirical estimation: 

log P(X > x) = c − ζ · logx + ε,  (2) 

 where c=logk is a constant and ε is a stochastic error term, assumed to be independently and identically 

distributed. In this log-log specification, the power law exponent ζ corresponds to the slope of the linear 

relationship. The standard error of ζ is given asymptotically by ζ(n/2) −1/2, where n denotes the number of 

observations, accounting for residual autocorrelation. To estimate ζ, we fit the empirical distribution of 

normalized daily stock returns to a power law distribution for each calendar year in the sample period. To 

capture extreme market movements—both positive and negative—we use the absolute values of the 

normalized returns (Gabaix et al., 2003). The tail region is defined as the subset of returns exceeding two 

standard deviations from the mean, a common threshold in the literature (Gabaix et al., 2006; Plerou et al., 

1999). This approach allows us to isolate the heavy-tailed behavior of returns and quantify the intensity of 

herding via changes in the estimated exponent. 

 

Theory Development: Quantum model 

This section introduces a theoretical model grounded in quantum mechanics to explain the observed power 

law behavior in stock return distributions. The model originates from the Fokker–Planck (FP) equation, 

which describes the time evolution of the probability density function of stochastic processes, and derives 

a Schrödinger-type formulation to establish the connection between business cycles and the power law 

exponent. Let the log return of a stock be defined as:  

x = ln pt − ln pt−∆t , 

where pt is the stock price at time t, and xxx represents the log return over interval Δt. We assume the 

dynamics of returns follow a stochastic differential equation (SDE): 



dx = v(x, t)dt + σ(x, t)dWt , 

here v(x,t) is the drift term, σ(x,t) denotes the volatility function, and Wt represents a standard Wiener 

process. 

The drift component is hypothesized to originate from an external potential field V(x,t), yielding an analogy 

with classical mechanics. Accordingly, we define a constant diffusion coefficient D(x,t)=D, simplifying the 

FP equation for analytical tractability. 

Let ρ(x,t) denote the probability density function of returns. Under these assumptions, the FP equation can 

be recast in a form reminiscent of quantum dynamics by introducing a wave function-like transformation 

W(x,t) and a Hermitian operator Ĥ, as follows: 

ĤW(x,t)=EW(x,t), 

where Ĥ is the Hamiltonian operator and EEE represents an energy eigenvalue associated with the system. 

This transformation leads to a time-independent Schrödinger equation whose solution describes the 

stationary distribution of stock returns. When calibrated to empirical data, the resulting distribution exhibits 

power-law tails, consistent with market observations. Furthermore, the derived exponent ζ\zetaζ is found 

to vary systematically with macroeconomic conditions: it increases during economic expansions (indicating 

weaker herding) and decreases during recessions (indicating stronger herding), thereby linking the 

distributional properties of stock returns to the business cycle. 

 

Hypotheses 

A growing body of literature highlights those financial markets respond asymmetrically to different phases 

of the economic cycle. In particular, periods of economic downturn are typically marked by heightened 

return volatility and persistent volatility clustering (Choudhry et al., 2016; Corradi et al., 2013). Moreover, 

forecast dispersion among analysts tends to widen significantly during recessions compared to 

expansionary periods (Amiram et al., 2018; Hope & Kang, 2005). These trends suggest that investor 

behavior may shift under different macroeconomic conditions, becoming more synchronized or imitative 

in times of uncertainty. 

Based on these observations, we formulate our first testable hypothesis: 

Hypothesis 1 

Investor herding in stock returns becomes more pronounced during periods of economic contraction than 

during times of economic growth. 

To evaluate this hypothesis, we compute and compare power law exponents during recessionary and non-

recessionary periods. Additionally, we assess the relationship between business cycles and herding behavior 

using the following regression model: 

ζt=α+βgt+εt 

In this equation, ζt\zeta_tζt denotes the power law exponent for year ttt, while gtg_tgt represents the real 

GDP growth rate. A significantly positive coefficient β\betaβ would support the hypothesis that stronger 

economic performance correlates with weaker herding behavior. 



Herding behavior typically reflects some level of coordinated action among market participants. This 

coordination can stem from shared information sources, common interpretations, or collective responses to 

prevailing narratives (Cont & Bouchaud, 2000). In environments marked by elevated uncertainty, the 

incentive to imitate others becomes stronger, particularly when access to reliable information is limited. 

Under such conditions, investors may look to the behavior of peers as a substitute for direct information 

(Alhaj-Yaseen & Yau, 2018; Park & Sabourian, 2011; Devenow & Welch, 1996). 

Moreover, there is substantial evidence linking weak economic growth with heightened economic 

uncertainty (Bloom, 2014). This connection suggests that uncertainty may act as an intermediary factor 

between business cycle fluctuations and herding tendencies. Building on this insight, we propose a second 

hypothesis: 

Hypothesis 2 

Economic uncertainty serves as the underlying mechanism that drives the counter-cyclical nature of herding 

behavior in stock returns. To investigate this mechanism, we analyze whether economic uncertainty 

mediates the relationship between GDP growth and the estimated power law exponents, using a series of 

regression models. 

Empirical Results 

Figure 1 illustrates the yearly estimates of the power law exponent, with recession periods (as defined by 

the NBER) shaded in gray. As shown in the figure, power law exponents tend to be lower during recession 

years compared to periods of economic expansion, indicating stronger herding behavior in downturns. 

 

 
Fig. 1 The power law exponent, economic uncertainty, and business cycle. The 

solid line is the annual power law exponent calculated by aggregating daily 

normalized S&P 500 stock returns, and the dashed line is the annual forecaster 

uncertainty according to Bloom (2009). The shaded areas indicate recession periods 

identified by the NBER recession indicator 

 



The solid line represents the annual power law exponent, calculated from normalized daily returns of S&P 

500 stocks. The dashed line shows annual forecaster uncertainty, following Bloom (2009). Shaded areas 

denote NBER-defined recessions. To validate previous findings, we begin by estimating the power law 

exponent for the full sample. Our estimate is approximately 3.138 with an R² of 97.75%, aligning with the 

range of 2–4 commonly reported in studies such as Feng et al. (2012) and Gopikrishnan et al. (1999). As 

smaller exponents suggest stronger tail herding (Feng et al., 2012; Cont & Bouchaud, 2000), this estimate 

confirms the robustness of the power law behavior in financial markets. Next, we explore the relationship 

between business cycles and herding behavior by comparing power law exponents during recessions and 

booms. Based on the NBER classification, we divide the sample accordingly and present the results in 

Table 2. The findings show that the mean and median exponents are significantly higher in booms than in 

recessions. Both the t-test for means and the Wilcoxon rank-sum test for medians confirm the difference at 

the 1% level. This supports Hypothesis 1: herding intensifies during economic downturns. 

Table 2 Power law exponents in booms and recessions 

 

Mean Median 

Boom 3.837 ± 0.097 3.755 

Recession 2.843 ± 0.196 2.810 

The first column shows the average power law exponents and their standard errors 

during the boom and recession periods. The p-values for the t-test of equality 

between means and Wilcoxon rank-sum z-test of equality between medians are 

0.001 and 0.005, respectively 

 

We then estimate the regression model from Equation (6) to examine the impact of GDP growth on the 

power law exponent. Model (1) in Table 3 reports a significant and positive coefficient on GDP growth, 

confirming that lower growth rates correspond to smaller exponents—indicative of stronger herding. To 

test Hypothesis 2, we explore whether economic uncertainty mediates the relationship between GDP growth 

and herding. Model (2) shows that GDP growth is significantly and negatively related to forecaster 

uncertainty. Model (3) then links higher forecaster uncertainty to smaller power law exponents. Together, 

these results indicate that uncertainty indeed plays a mediating role between economic performance and 

herding behavior. 

 

Table 3 GDP growth rate, economic uncertainty, and the power law exponent 

 

 (1) (2) (3) (4) (5) (6) 

PLE Forecast
er 
uncertain
ty 

PLE PLE PLE PLE 

GDP growth rate 0.159*

** 

— 
0.020*** 

  0.112**  

 (5.614) (− 3.477)   (2.309)  

Forecaster   —   — 



uncertainty 3.436*** 1.838* 

   (− 4.862)   (− 
1.683) 

Dummy1    — 0.018 — 0.014 — 
0.171 

    (− 0.130) (− 0.114) (− 
1.054) 

Dummy2    — 
0.556*** 

— 
0.270* 

— 
0.506** 

    (− 2.816) (− 1.658) (− 
2.504) 

Constant 3.306*

** 

0.470*** 5.143*** 3.935*** 3.537**

* 

4.750*

** 

 (37.792

) 

(37.538) (18.214) (26.764) (23.389) (10.080

) 

Observations 30 30 30 30 30 30 

R2 0.255 0.358 0.139 0.212 0.281 0.225 

Adjusted R2 0.228 0.335 0.108 0.153 0.198 0.135 

This table displays the regression results using annual data. Model (1) is a 

regression of the power law exponent on the US GDP growth rate. Model (2) is 

a regression of forecaster uncertainty on the GDP growth rate. Model (3) is a 

regression of the power law exponent on forecaster uncertainty. Models (4)–(6) 

are regressions of the power law exponent on two dummy variables: Dummy1 is 

defined as 1 when the GDP growth rate is higher and forecaster uncertainty is smaller 

than the sample average, and zero otherwise. Dummy2 is defined as 1 when the GDP 

growth rate is lower and forecaster uncertainty is larger than the sample average, 

and zero otherwise. The variance inflation factors (VIF) of Models (4)–(6) are 

less than 5, implying that multicollinearity does not reduce the precision of our 

estimated coefficients and cannot weaken the statistical power of our regression 

models (Table 7). The numbers within parentheses are z-statistics calculated with 

heteroskedasticity and autocorrelation-consistent standard errors, according to 

Newey and West (1987). *, **, and *** represent significance at the 10%, 5%, and 

1% levels, respectively. PLE denotes the power law exponent. 

 

Lastly, Models (4)–(6) incorporate dummy variables to further test the combined effect of business cycles 

and uncertainty. The coefficient on Dummy2 (low GDP growth and high uncertainty) is consistently 

negative and significant across models. This confirms that herding behavior is significantly amplified in 

environments where weak growth coincides with elevated uncertainty, reinforcing our conclusion that 

economic uncertainty is a key channel through which business cycles influence market-wide herding. 

Conclusion 

This research explored how fluctuations in the business cycle relate to herding behavior in the U.S. equity 

market. We used the GDP growth rate and NBER recession indicators to reflect the state of the economy, 

while herding was captured through the power law exponent derived from stock return distributions. To 

support our investigation, we first developed a theoretical framework using concepts from quantum 

mechanics, which suggested a direct link between economic cycles and the distribution of stock returns. 

The model also implied that economic uncertainty could serve as a bridge connecting lower economic 

growth to intensified herding. Empirical analysis confirmed these theoretical insights. We observed that 



herding behavior tends to increase during economic downturns, as reflected in smaller power law 

exponents. Statistical testing showed that the GDP growth rate significantly influences herding, and that 

higher levels of economic uncertainty—measured by the dispersion in professional GDP forecasts—are 

associated with more extreme return behavior. During recessions, greater uncertainty and lower confidence 

drive investors to rely more heavily on the actions of others, amplifying herding. Overall, our findings 

demonstrate a clear connection between market behavior and macroeconomic conditions. From a policy 

perspective, the results highlight the need to monitor herding during periods of heightened uncertainty, as 

such dynamics can contribute to market instability. For investors, understanding the cyclical nature of 

herding may help in crafting strategies to limit losses during recessions. Future research could expand this 

work by including additional control variables and testing alternative pathways through which uncertainty 

impacts market dynamics. 
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